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A group approach to the analysis of the Euler and Navier-Stokes equations is proposed. Generalized groups of currents, i.e. 
groups of linear transformations of the tangent spaces of a smooth manifold that conserve a given structure on it and depend 
smoothly on the point, are considered. Semidirect products of such groups and groups that act on the manifold and conserve 
the structure are constructed. It is shown that the infinite-dimensional group obtained is a Lie-Frechet group of the second kind. 
Using the construction obtained a group interpretation of the solutions of the travelling wave type in multidimensional 
hydrodynamics is given. A general description of the solutions that are constructed of the stationary flow and the vector field of 
the compact group of diffeomorphisms of the flow domain that conserve a volume, is presented. The group approach, which is 
based on the constructions of groups of currents and its generalizations, enables one to describe in a unified manner various 
physical phenomena: the non-linear dynamics of the magnetization of ferromagnetic materials, some classes of flows of an 
incompressible fluid and certain objects of quantum cosmology. 0 2003 Elsevier Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Examples of group analysis in mechanics were given in [l] for Hamiltonian systems by using the apparatus 
of local Lie groups and also for a certain class of flows of an incompressible fluid [2] by the application 
of finite-dimensional Lie groups. It was stated [3] that in physical applications one should use infinite- 
dimensional Lie groups. 

In this paper the problem of the non-local solvability of multidimensional equations for an 
incompressible ideal or viscous fluid is studied. The domain of fluid flows is some manifold A4 provided 
with a Riemannian metric. The fluid velocity fields form a space SVect(M) of divergence-free vector 
fields on M. Provided with a Poisson bracket (a commutator) of vector fields [u, U] the space SVect(M) 
becomes a Lie algebra. Its Lie group is the infinite-dimensional group SDiff(M) of diffeomorphisms 
that conserve a volume element of the manifold M, which can be treated as the configuration space of 
fluxes of incompressible fluid in A4 [4,5]. The transport of fluid particles (an advection) [6] is given by 
the action of the curveg(t) from the group SDiff(M) on M. The fluid velocity field u(t) is obtained from 
the tangent vector to the curve Tg(t) by applying the right-hand shift by the element g(t)-’ from g(t) 
into the unit of the group SDiff(A4). This gives a relation between the Eulerian and Lagrangian portrait 
of incompressible fluid flows. The curve u(t) in the Lie algebra SVect(M) obeys Euler’s equations (an 
ideal fluid) or the Navier-Stokes equations (a viscous fluid). In the general case the problem of 
constructing the curve g(t) in the Lie algebra SVect(M) with given initial vector field u = u(O) that obeys 
the Euler of Navier-Stokes equations and is extendable to infinity in time has not been solved for multi- 
dimensional (the dimensional@ is three or more) hydrodynamics. 

Below we construct infinite-dimensional subalgebras in the Lie algebra of divergence-free vector fields 
g c SVect(M), which possess the property that for the initial conditions u(0) specified by vector fields 
from these subalgebras (u(0) E g), the solutions of the Euler and Navier-Stokes equations u(t) remain 
of the same variety (u(t) E g) and can be continued to infinity in time. 

The infinite-dimensional Lie groups of currents G(M, K), namely, groups that are formed by smooth 
pointwise mappings from the manifold M to the given finite-dimensional Lie group K are used. For 
example, the group of currents G(M, SO(n)) (where SO( II is a proper orthogonal group) is a ) 
configuration space in the problem of the non-linear dynamics of the magnetization of ferromagnetic 
materials (a generalized solid body) described by the Landau-Lifshits equation [7]. In the context of 
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this physical formulation of the problem a generalization of the group of currents G(M, SO(n)) was 
proposed [8], namely, the group O(M) of pointwise orthogonal transformations of tangent spaces on 
the compact oriented Riemannian manifold M. Its Lie algebra is the Lie algebra o(m) of pointwise skew- 
symmetric transformations of tangent spaces on M. Generalized groups of currents, connected with 
other geometric structures, for example, conformal structures can also be considered. 

It the general case the geometric structure desired is given by a certain G-structure [9, p. 3321, i.e. 
by the bundle P + M with the structure group G C GL(V’), where I/ = R” and IZ = dim, that is, at 
some point the space I/ is isomorphic to a space tangent to M. As a result, a G-structure of general 
form is obtained by reduction of the principal bundle F(M) + M of the frames on M from the structure 
group GL(V’) (complete linear) to some subgroup G of it. For a given G-structure P on M one can 
construct a generalized group of currents R, which acts in the tangent bundle TM by layerwise 
transformations G(TM) T,M that depend smoothly on the base point x and conserve the geometric 
structure induced by the G-structure P in the tangent space T,M. Thus, elements of the group R 
transform the frame set of the G-structure into itself. They can be represented as smooth sections of 
the bundle G(M) + M associated with the principal bundle determined by the G-structure. The Lie 
algebra r of the group R consists of smooth sections of the vector bundle g(M) 3 M. Here the Lie algebras 
g(T,M) of the groups G(T,M) that in the tangent spaces T,M conserve the geometric structure 
determined by the G-structure are layers. The layers are isomorphic to the Lie algebra g of the Lie 
group G. 

In this paper, groups, which are a semidirect product of generalized groups of currents associated 
with geometric structures and finite-dimensional Lie groups consisting of isomorphisms of these 
structures, are constructed. The infinite-dimensional Lie groups obtained in this way are embedded 
into the group SDiff(M). A group analysis of the classes of incompressible fluid flows obtained is carried 
out, and the corresponding solutions of the Euler and Navier-Stokes equations are obtained from this 
analysis. 

2. THE NECESSARY APPARATUS FROM THE THEORY OF 
INFINITE-DIMENSIONAL LIE GROUPS 

We will dwell briefly on the structural properties of infinite-dimensional Lie groups. The group of 
diffeomorphisms SDiff(M) has a structure of the Lie-Frechet group [lo, 111, whereas the group of 
currents G(M, K) also possesses the stronger structure of the Campbell-Hausdorff group, or a Lie group 
of the first kind. A group of the first kind is such a Lie-Frechet group that possesses canonical coordinates 
of the first kind, that is, its Lie exponential defines a local map in the unit element of the group [12, 
131. The generalized group of currents is also a Lie group of the first kind [8]. 

In [13] the concept of an infinite-dimensional Lie group of the second kind was introduced as 
possessing local coordinates that are an analog of canonical coordinates of the second kind of finite- 
dimensional Lie groups. Consequently, the group of the second kind is such a Lie-Frechet group G 
that its Lie algebra g can be expanded in a direct sum of topological vector spaces g = Vi + . . . + V, 
and a product of k Lie exponentials, i.e. the map (vi, . . . , z)k) + exp(ut) . . . exp(u,& specifies a local 
map in the unit of a group. For this class of groups a Lie theory was constructed, which is similar to 
the finite-dimensional theory (three Lie theorems were proved), which could not be done for all group 
SDiff(M). 

The following construction will be used many times. 

Theorem 2.1. If the finite-dimensional Lie group K acts on the manifold M by automorphisms of the 
G-structure P, then one can construct the semidirect product B = KR of the group K and the generalized 
group of currents R of the G-structure pointwise automorphisms, which is a Lie-Frechet group of the 
second kind and ILH is the Lie group. 

Proof. Let the action of the group K on the group R be given. In what follows it will be convenient 
to denote the tangent vector a E T# by the pair (p, a), that is, $a) = p, where R: TM + M is a projection 
of the tangent bundle. For the element k E R we put Tk(p, a) = (k(p), dk IP(a)). Then for the element 
o E R we defined 

k(o) = (Tk)o(Tk-‘) (2.1) 

From the condition of the theorem we have that k(o) E R and K acts on R by automorphisms. 
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We can now construct the semidirect product B of the groups K and R. In B we introduce the operation 

(1, pw, 0) = (k I-40)) (2.2) 

It is well known that B with operation (2.2) is a group. The pair (Id, Id) is the unit element. The inverse 
eleEnt has the form (k, o)-’ = (k-l, k-‘(o-l)). 

(k O)(P9 a) = (k(P), &pkl,W)) (2.3) 

It can be directly verified that the mapping (2.3) specifies the action of the group B on the tangent 
bundle TM. 

Consider the Lie algebra Y. Let k be a Lie algebra of the group K, this algebra consists of the Killing 
(conserving the G-structure) vector fields on M. We introduce the mapping F: k x I + B. We put 

FW) = exp(q)exp(fh q E k fc r 

Let U C k be a neighbourhood of the injectivity of the exponential mapping of the group K, and 
I/ C r be a neighbourhood of zero element consisting of sections of the bundle&M) 3 M that pointwisely 
belong to the domains of injectivity of the exponential mapping in a layer (exp: g(T,M) + G(T,M)). 
Then the restriction of the mapping F to U x V defines canonical coordinates of the second kind on B 
and specifies a local map in the group unit. At an arbitrary point p = (g, s) E B the local mapA(g, s) 
can be given by the mapping 

F(q,f) = gexp(q)sexp(f), (s.f) E u x V 

A transition from the map A(g, s) to the map A(j, I) leads to the equations 

h = wp(q)sexp(f) =jexp@)rexpW, h E A(g, s) n A(j, r) 

From the uniqueness of the element expansion in the semidirect product of groups we obtain 
gexp(q) =jexp(p), sexp(f) = rev(k). F rom this we conclude that the transition functions on the group 
B are reduced to a pair of transition functions of canonical coordinates for the finite-dimensional Lie 
group K and the generalized group of currents R. As a result, the atlas {A(g, s)} constructed defines 
the structure of the Lie-Frechet group on B. From (2.2) the operation of multiplying m by B can be 
represented in the form of the superposition m = (m K, m,(Id, Au@))) of multiplication in K, 
multiplication in R and the action of K on R by the automorphisms according to formula (2.1). Hence 
follows the smoothness of group operations in the atlas constructed. 

To introduce the structure of the Lie group ILH we imbed the group R into the group R”, which consists 
of the bundle sections C(M) -+ M of Sobolev’s class W”; its Lie algebra will be the space ? consisting 
of sections of the bundle g(M) + M of class W”. The group operation in the generalized group of currents 
R is smooth in the class W” since this is reduced to pairwise multiplications of coordinate functions of 
sections in the atlas constructed. The action of the Lie algebra k is reduced to multiplications of given 
smooth functions by the first derivatives of the coordinate functions of sections from r”, and hence this 
operation lowers by one the Sobolev smoothness of these sections, that is, it transforms the Sobolev 
class W” into W” - ‘. Hence, using the atlas constructed, one can show that the action K on R by 
automorphisms are smooth in the ILH-sence, i.e. it has the class W” because it is a mapping from 
W” ’ m + ’ into Wn. The theorem is proved. 

As a compact manifold we next consider the spherical bundle S(M) -+ M over the n-dimensional 
Riemannian manifold M with a layer being an (n - 1)-dimensional unit sphere S” - ‘, 

Proposition 2.1. Under the conditions of Theorem 2.1 let the Lie group K be transitive on the manifold 
M, and let the groups of automorphisms G, in layers be transitive on rays in T,M and moreover, for 
any element g E G, the element g((det g)-lid) E G. 

Then the natural action of the group B on the tangent bundle TM induces a transitive action on the 
spherical bundle S(M) in the case of the Riemannian manifold M. The subgroup N = {Id, h(x)Id,}, 
where h(x)IdX is a pointwise homothety of the linear spaces TIM, is a normal subgroup of non-efficiency 
of this action, and the action of the factor-group Q = B/N on S(M) is an efficient one. 
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Proof. In the case of action on the manifold with Riemannian metric, the action on S(M) is defined 
by the action on TM according to the formula 

(k o)(P, d = (NP), o(dk(a))ldet(o(dk(a)))) 

and since the point (p, a) belongs to a spherical bundle, we have ]a ] = 1. 
The subgroup N remains the points S(M) to be lixed. In the arbitrary conjugacy class (u, f)N lies a 

single element of the form (u, @) such that $I is a pointwise unimodal transformation, namely, this is 
the element o = fldet f. From this it follows that the factor-group Q = B/N acts efficiently on S(M). 

Example 2.1. Let M = T2 be a two-dimensional torus with a standard metric, and K = T2. In this case S(M) z T3. 
In the standard coordinates (x, y, z) on T3, taken modulo 2rr, vector fields of the form 

u = aax + bay +flx, y)az, , a, b E R 

make up the Lie algebra b of the group B. 

Example 2.2. Take M = S” (an n-dimensional sphere) with a conformal structure. As K we take the group 
SO(1, n + 1) of conformal transformations S” (when n = 2 this is the Lorentz group). 

3. APPLICATIONS TO THE DYNAMICS OF AN IDEAL 
INCOMPRESSIBLE FLUID 

In what follows, the case when K is a group of isometry of a Riemannian metric on the manifold M, 
and R is a group O(M) of pointwise orthogonal transformations, will be important. In this case we will 
consider as a domain of fluid flows the manifold S(M), i.e. the spherical bundle S(M) + M. The manifold 
S(M) has a dimension that is one greater than h4; as an example, if M is a surface, S(M) is a three- 
dimensional manifold. S(M) is a submanifold of the tangent bundle TM, which is invariant under the 
natural action of groups K and R on TM. The group B = KR is imbedded into the group SDiff(SM)) 
of diffeomorphisms that conserve the volume element S(M), and, therefore, into the configuration space 
of incompressible fluid in S(M). 

We will establish the relation of this construction with Euler’s equations for an ideal incompressible 
fluid 

au/at+ V,U = vp (3.1) 
It will be also convenient to use a representation of Euler’s equations in the form 

au/at = -adu*(u) (3.2) 

Let N be a Riemannian manifold, which is the domain of fluid flows. Then adz)* is an operator of 
co-adjoint representation in the Lie algebra SVect(N) of divergence-free vector fields on N, where the 
conjugacy operation corresponds to scalar product in the space of divergence-free vector fields [4] 

that is (adu*(u), w) = (u, adu(w)) = (u, [u, w]). 
The Riemannian metric (3.3) is defined in SVect(N), which is a space tangential to the unit of the 

group of diffeomorphisms SDiff(N) that conserve the volume element N. This metric is continued to 
the right-invariant metric, which is the kinetic energy on the group SDiff(N) [4]. 

Below we analyse Example 2.1 in these terms. Let b be a Lie algebra of the group B. We will study 
the velocity fields of the Lie algebra B as vector fields of an ideal incompressible fluid on T3. For the 
vector field u = (a, b, f) on T3 Euler’s equations lead to the system 

adat = 0, abiat = 0, aflat + aaff& + baflay = 0 

From this one can obtain a solution of Euler’s equations 

u’ = (a, 6, f(x - at, y - bt)) 
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A generalization of the subgroup B, which also leads to solutions of three-dimensional hydrodynamics 
that are extendable to infinity in time, can be constructed. We consider vector fields on T3 of the form 
w = II + f(x, y2a z, where 2) = a(x, y)dx + b(x, y)ay, that is, a and b are no longer constants, but are 
functions on T , and u is a divergence-free field on T’. It is obvious that such vector fields make up a 
Lie algebra; we will denote this algebra by s and the corresponding group of diffeomorphisms by S. 
For the vector field w Euler’s equations lead to the system 

adat + (VU, U) = vp, af iat + df iax + baf lay = 0 
The equations of the vector field u are Euler’s equations on T*. In two-dimensional hydrodynamics 

Euler’s equations have solutions that are extendable to infinity in time. We will denote this solution by 
u’, and the corresponding flow of an ideal incompressible fluid on T2 byg’. Then it can be directly verified 
that the vector field wf = (u’,f(gef(x, y)) will be a solution of the original Euler’s equations on T3 with 
the initial condition w0 = (u”, f(x, y)). 

Proposition 3.1. The solutions of Euler’s equations with initial conditions u = u” E s give the curves 
ut E s extendable to infinity in time. The corresponding flows U’ of an ideal incompressible fluid lie in 
the group S. 

We will now formulate a general statement, which gives integrable solutions of Euler’s equations in 
multidimensional hydrodynamics. We recall that the solution of Euler’s equations 2)” = u is referred to 
as a stationary vector field if it is constant in time [14, p. 691. We will first prove the following proposition. 

Proposition 3.2. Suppose that, on the oriented compact Riemannian manifold M, the vector field u 
from the Lie algebra k of the compact Lie group K of the Riemannian metric automorphisms is given. 
Then the vector field u is stationary. 

Proof. We will use form (3.2) of Euler’s equations. Since u is the vector field of a compact group 
that conserves the Riemannian metric on M, the operator adu is skew-symmetric in the space SVect(M) 
of divergence-free vector fields on M with a scalar product that is the kinetic energy. If we denote the 
Lie algebra of the group K by k and the orthogonal complement to k by P, it can easily be shown that 
adu(P) C P. It is obvious that adu(k) C k. Then (adu)*(k) C k also. We will show that (adu)*(u) = 
0. We take u E k and we will then have ((adu)*(u), u) = (u, ad+)) = -(u, adu(u)). 

However, since u E k, the operator ad-u is skew-symmetric, and from this it follows that (u, adu(u)) 
= 0. But since (adu)*(u) C k, then (adu)*(u) = 0, and the vector field u is stationary. 

For later use we need a standard action of the diffeomorphism g on the vector field u or the function 
f, which we will denote by an asterisk subscript: 

Theorem 3.1. Suppose that, on the compact oriented Riemannian manifold M, there are two divergence- 
free vector fields u, 2) that obey the following conditions 

(1) u is a vector field from the Lie algebra for the compact. Lie group of auto-morphisms of the 
Riemannian metric on M, 

(2) the vector field 2) is stationary; 
(3) V,u = 0 or conditions 3’V,u = 0. 
Then the vector field 

w’ = u + g;‘(t) under condition 3 or u + g:(u) under condition 3’ 

will be a solution of Euler’s equations for an ideal incompressible fluid with the initial condition u + u. 
Here $ is the flux of the vector field u. 

Proof. From Proposition 3.2 it follows that the vector field u is stationary, and therefore, V,u = Vq 
(a gradient vector field). From the stationarity of the vector field 2) it follows that V,u = Vf. Using 
condition 3, we calculate 

atcwfh = s = atg;iw, = T = [u, g301 = y&3~) - v*u (V, = V&)) * 
Note that g*(u) = u 
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If now we lift the vector field u and the action of the diffeomorphism g* on the tangent bundle TM, 
there a similar identity will be conserved. Since g* conserves the Riemannian structure, we have 
V,g;‘(u) = g,‘V,(u) = 0 according to condition 3. 

Let us calculate Vwrw’. From the conditions of the theorem and the preceding calculations we 
have 

v ,d w = v,u + v,gm + v*u + V*g&) = v,u + v*u + v*g&q 

Since g-’ conserves the metric tensor, then 

v*g;7(u) = g;=v,u = &Vf = Vg;%f 

Hence, we have 

at(d) = vw,d = vg;7f + vuu = vg;Tf + vq 

From this it follows that PV~ satisfied Euler’s equations. The theorem with condition 3 is proved. A version 
with condition 3’ can be proved similarly. 

Example 3.1. Consider vector fields on T3, 2) = g + h, where q = aax + bdy + c&, h is a stationary divergence- 
free vector field, and a, b and c are constants. We have Vhq = 0, i.e. condition 3’ of Theorem 3.1 is satisfied, and 
we obtain that a solution of Euler’s equations with initial data u has the form 

v’=(a,b,c)+h(x-ar,y-bt,z-ct) 

In particular, let a, b, c, be constants, and let h + (A, B, C) be a field on the three-dimensional torus 
([4, 14, p. 72, 15]), that is 

h = (Asinz + Ccosy, Bsinx + Acosz, Csiny + Bcosx) (3.5) 

Then as a solution Euler’s equations (3.4), (3.5) we have a field that “drifts” over the three-dimensional 
torus (A, B, C). From this it follows that (A, B, C) is a field, which does not possess Lyapunov stability 
as a solution of Euler’s equations. Namely, the following is true. 

Corollary 3.1. For sufficiently long time t, the e-variation (A, B, C) of the field h in the norm L* (and 
in Sobolev’s norm W” for arbitrary rz 2 1) leads to the variation fiI 1 h 11 of the corresponding solution 
of Euler’s equations in the norm L*. 

Proof. Let us take a = b = c = E/G. Then the vector field 2)’ = (a, b, c) + h will be the e-variation 
of h. During the time T = x&%/(~E) the solution of Euler’s equations with the initial data 2) has the 
form 

I+ = (a, b, c) + (-Aces(z) + Csin(y), -Bcos(x) + Asin( -Ccos(y) + Bsin(x)) 

This gives the desired variation of the solution of Euler’s equations. 
We will now relate the class of solutions of Euler’s equations obtained with the groups of the second 

kind constructed above. 

Theorem 3.2. Suppose that, on the two-dimensional compact Riemannian manifold M with O(2)- 
structure, the Killing vector field u is given, and the vector field 2) belongs to the Lie algebra r for the 
generalized group of currents R with pointwise automorphisms of the 0(2)-structure. 

Then, on the spherical bundle S(M) for the pair (u, U) (here we mean by u its natural lifting to S(M)), 
the conditions of Theorem 3.1 in the version of condition 3’ are satisfied. 

Proof. The satisfaction of the condition V,u = 0 and the stationarity of the vector field 2) should be 
verified. Let us fix the point x E M. Since the spherical bundle 7~: S(M) + M is locally trivial, one can 
choose the neighbourhood U(x) C M, over which it is constructed as a direct product. Let T/ = x-‘(U). 
We have that V = U x S’ is a direct product of Riemannian manifolds. We specify a local system of 
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coordinates p = (p’, p2) in the vicinity of U and choose on the metrized manifold S’ the standard 
coordinate 41 taken modulo 2~ We have 

u = &(p)ap’, 2) = uatp 

From this it follows that 

Since the metric of the direct product is given on V, then V,$ap’ = 0, and from this it follows that 
V,u = 0. Next we calculate V,u. For fixedp we denote the vector field on S’ by b(p) = u(p, $)a@ It 
is directly verified that V,u(p, Q) = Vbb, where a covariant derivative of the vector field b along itself 
on S’ is on the right-hand side. The vector field b is orthogonal for the standard metric on S1, where it 
follows that b(9) = const, and we obtain that Vbb = 0. This means that the vector field u is stationary 
and the conditions of Theorem 3.1 are satisfied. 

4. THE CASE OF A VISCOUS INCOMPRESSIBLE FLUID 

Let us consider the flow of a viscous incompressible fluid described by the Navier-Stokes equations 
W, 171) 

adat + v,U - VAV = vp (4.1) 

where A is the Laplace-Beltrame operator on vector fields. Here solutions integrable at infinity are 
also obtained. 

Consider the vector fields on a three-dimensional torus from Proposition 3.1. Suppose u = (a, b,f(x, 
y)) on T3, a, b E R is the initial velocity field of the viscous incompressible fluid. The Navier-Stokes 
equations for the velocity field of the form u lead to the system 

a&t = 0, abiat = 0, afiat + aaflx + baf/ay - VAf = 0 

where Afis the Laplace operator. For further analysis it will be more convenient to use a Fourier-series 
expansion of the function f 

f = c fk, 1(x9 Y) 
(k 0 

We put h,,, [I = -k2 - 12. 
Next we introduce the time-dependent function 

fkx9 Y) = Cexp(vh~k,,,t)fk,,(x,y) 

k 1 

(4.2) 

Proposition 4.1. The curve ur = (a, b, ft(x - at, y - bt)) is a solution of the Navier-Stokes equations 
on T with the initial conditions u = (a, b, f(x, y)), a, b E R. 

Proof. To solve Euler’s equations with the same initial data u we use the method of variation of 
parameters. As the varying parameters we will use the Fourier-expansion coefficients of the functionf. 

Since h@, Ij is the eigenvalue of the Laplace operator on prime harmonics (cos(kx + b), sin@ + b)) 
we obtain equations for finding the Fourier-expansion coefficients 

aa (k, ,)lat = +k, Ijack, I)* ab(k, ,,lat = +k, +‘(k, I) 

where the validity of the proposition follows. 
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Thus, for the Navier-Stokes equations, as well as for Euler’s equations, solutions on the three- 
dimensional torus with initial conditions u E b give the curves uf E b, extendable to infinity in time. 
The corresponding flows U’ of viscous incompressible fluid lie in the group B. As a result, the infinite- 
dimensional Lie group B is an invariant group for evolutionary equations both of an ideal fluid and of 
a viscous incompressible fluid. We will give an analog of Theorem 3.1 for a viscous fluid. 

Theorem 4.1 Suppose that, on the compact oriented Riemannian manifold M we are given two 
divergence-free vector fields u and 2) that obey conditions 1,2 and 3 (or condition 3’) of Theorem 3.1 
and, moreover, are eigenvectors for the Laplace-Beltrame operator with eigenvalues h and u respectively. 

Then the vector field 

w* = exp(vXt)u + exp(vpt)gi@(‘) (u) under condition 3 

or 

exp(vht)u + exp(vpr)gt’*’ (u) under condition 3 

will be a solution of the Navier-Stokes equations for a viscous incompressible fluid with initial data 
u + 2) (where, if h f 0, then Q(t) = (exp(vht) - l)l(vh) when t f 0 and $(O) = 0, and, if h = 0, then 
w = 9. 

Proof. Here we will also use the method of variation of parameters. To fix our ideas, suppose condition 
3 is satisfied. We will seek a solution in the form 

w* = a(t)u + b(t)g:“’ (u) 

If we take into account that, when the Riemannian metric is conservative, the action of diffeo- 
morphisms on vector fields is commutative with the action of the Laplace-Beltrame operator, we obtain 
equations in a and b. 

a&t = vha, abiat = vbb 

with initial conditions a(0) = b(0) = 1, which must be supplemented by an equation in o. Substituting 
the expression for w* into the Navier-Stokes equations we obtain 

wd%q = z = [ exp(vhz)u, g2”‘( u)] 

Using the well-known expression for the Lie bracket of vector fields in terms of the derivative with 
respect to action of the curve of diffeomorphisms from the flux of one vector field to another 
([9, p. 101-1051) and taking into account the change of time t that has been made, we obtain the following 
equation for (b(t): 

a$iat = exp(vht) 

with the initial condition o(0) = 0. Solving the equations obtained for a, b, 41 we complete the proof of 
the theorem. 

5. THE RELATION BETWEEN THE CONSTRUCTIONS 
AND FIELD THEORY 

We will return to Example 2.2 and analyse the case n = 2 in more detail. The group of conformal 
transformations of tangent space at the point CON( T,S*) G CON(R*) is commutative. Hence it follows 
that the action (2.1) of the group K on R = CON(S*) reduces to shifts of smooth functions on S* 
by conformal transformations of S*. Namely, the conformal transformation of the plane t E CON(R*) 
can be specified by the pair of numbers t = ($, 3L), where @ is the angle of clockwise rotation of the plane 
and h is the value of homothety. From this it follows that the element t E CON(S*) can be specified by 
a pair of smooth functions ($(x), h(x)) which, at the pointx E SO(1,3), give these parameters for the action 
in Tx(S2). Then the action of the element k E SO(1,3) on CON(S*) has the form 
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The normal subgroup N of the action non-efficiency of the group B = SO(1,3)R on S(S2) involves 
elements of the form (0, h(x)). After factorization with respect to N an element in the group Q = B/N 
can be specified by the pair (k, Q(X)), and as Q we get the semidirect product SO(1, 3)C?‘(S2) of the group 
SO(1, 3) by the space of smooth functions on the sphere eO(S2), where conformal transformations act 
on the functional space by translations. This is a Bondi-Metzner-Sachs (BMS) group, which is well- 
known in field theory [18]. 

Thus we have proved the following proposition. 

Proposition 5.1. The BMS group is a Lie-Frechet group of the second kind and can be realized as a 
subgroup of the group of diffeomorphisms 

Diff(S(S2)) z Diff(RP3) 

In the BMS group we consider its subgroup L = SO(3)O(S2), which is a semidirect product of the 
three-dimensional proper orthogonal group SO(3) and the group O(S2) of pointwise orthogonal 
transformations on TS . The group L also acts on S(S2). The Lie algebra 1 of the group L is formed by 
vector fields of this action that have the form u = h + r, where h is the vector field of the action of the 
orthogonal roup on S2, and r is the vector field of the pointwise o(2)-automorphisms of Riemannian 
metric on S 8 . According to Theorem 3.2, such vector fields give solutions of Euler’s equations on S(S2) 
of the form h + g:(u), where g’ is the flux of the orthogonal vector field h on S2. Note that L C B = 
SO(3)CON(S2) with N n L = Id, i.e. the action of the group L on S(S2) is efficient. Therefore the group 
L can be considered as L = SO(3)C”(S2) , i.e. as a semidirect product of the qroper orthogonal group 
SO(3) in the space of smooth functions on the two-dimensional sphere c(S ), where the orthogonal 
transformations act on functions by translations. 

From this we have the following proposition. 

Proposition 5.2. In the BMS group one can separate the subgroup L C BMS, L = SO(3)e”(S2). Vector 
fields of the Lie algebra 1 of the group L give non-stationary solutions of Euler’s equations on the three- 
dimensional manifold S(S2) that are extendable to infinity in time and remain in the Lie algebra 1. The 
corresponding flows of an ideal incompressible fluid are represented by curves in the group L, and hence 
in the BMS group. 

As regards the physical interpretation of the objects that arise from bundles over a two-dimensional 
sphere with a conformal structure and represented by the BMS group see [19]. 

I wish to thank A.L. Onitsik for useful discussions. 
This research was supported financially by the Russian Foundation for Basic Research (01-01-00709). 

1. 
2. 
3. 
4. 
5. 

6. 

7. 

8. 

9. 
10. 
11. 
12. 

13. 
14. 
15. 

16. 

REFERENCES 

ZHURAVLEV, V F., Invariant normalization of non-autonomous Hamilton systems. Prikl. Mat. Mekh., 2002,66,5,356-365. 
OVSYANNIKOV, L. V., The periodic motions of a gas. Prikl. Mat. Mekh., 2001,65, 1,567-577. 
KOZLOV, V V, Publications by E. Cartan. In Cartan, E. Selected Papers. Moscow, 1998. 
ARNOL’D, V. I., Mathematical Methods of Classical Mechanics. Editorial URCC, Moscow, 2000. 
EBIN, D. G. and MARSDEN, J., Groups of diffeomorphisms and the motion of an incompressible fluid.Ann. Math., 1970, 
92, 1, 102-16. 
DENISOVA, H. V and KOZLOV, V V., The steady motions of continuous media, resonances, and Lagrangian turbulence. 
Prikl. Mat. Mekh., 2002, 66,6,939-947. 
ALEKSOVSKII, V A. and LUKATSKII, A. M., Non-linear dynamics of the magnetization of ferromagnetic materials and 
the motion of a generalized solid with a group of currents. Teal: Mat. Fiz., 1990,85, 1, 115-123. 
LUKATSKII, A. M., A generalization of the constructions of groups of currents. In Problems of Group Theory and Homological 
Algebra. Yarosl. State Univ., Yaroslavl, 1998. 
STERNBERG, S., Lectures on Differential Geometry. Prentice Hall, Englewood Cliffs, NJ, 1964. 
LESLIE, J., On a differential structure for the group of diffeomorphisms. Topology, 1967, 6,2, 263-271. 
OMORI, H., Infinite dimensional Lie transformation group. Lect. Notes Math., Vol. 427. Springer, Berlin; 1974. 
ROBART, T, Groupes de Lie de dimension infinie. Seconde et troisieme theoremes de Lie. I. Groupes de premier espese. 
CR. ser: I., 1996,322, 11, 1071-1074. 
KAMRAN, N. and ROBART T, Abstract structure for Lie pseudogroups. C.R. Sex I., 1997,324, 12, 1395-1399. 
ARNOLD, V I. and KHESIN, B. A., Topological Methods in Hydrodynamics. Springer, New York, 1997. 
ETNYRE, J. and CHRIST, R., Contact topology and hydrodynamics III. Knotted orbits. Trans. Amex Math. Sot., 2000,352, 
12,5781-5794. 
LADYZHENSKAYA, 0. A., Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid. Fizmatgiz, Moscow, 
1961. 



A. M. Lukatskii 

17. TEMAM, R., Navier-Stokes Equations. North-Holland, Amsterdam: 1979. 
18. MCCARTHY, P J., The Bondi-MetznerSachs group in nuclear topology. Proc. Royal Sot. London, SeriesA, 1975,343,1635, 

489-523. 
19. HAWKING, S. and PENROSE, R., The Nature ofSpace and Time. University Press, Princeton, NJ, 1996. 

Translated by E.T. 


